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We establish that two-part models of pointing performance (Welford’s model) describe pointing on a com-
puter display significantly better than traditional one-part models (Fitts’s Law). We explore the space of
pointing models and describe how independent contributions of movement amplitude and target width to
pointing time can be captured in a parameter k. Through a reanalysis of data from related work we demon-
strate that one-part formulations are fragile in describing pointing performance, and that this fragility is
present for various devices and techniques. We show that this same data can be significantly better de-
scribed using two-part models. Finally, we demonstrate through further analysis of previous work and new
experimental data that k increases linearly with gain. Our primary contribution is the demonstration that
Fitts’s Law is more limited in applicability than previously appreciated, and that more robust models, such
as Welford’s formulation, should be adopted in many cases of practical interest.
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1. INTRODUCTION

In this article we compare the use of one-part and two-part models of pointing per-
formance in describing empirical data. We will consider the Fitts (Equation (1)) and
Shannon (Equation (2)) one-part models, and a two-part model due to A. T. Welford
(Equation (3)), as well as a new Shannon-Welford two-part model (Equation (4)) that
we introduce. We will explore how the different pointing models perform at different
levels of control/display gain, gain G being the scaling factor between physical move-
ment in control space and resulting motion in display space: G = vdisplay/vcontrol [Casiez
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and Roussel 2011], where vdisplay is the velocity of the cursor in display space and vcontrol
is the velocity of the hand, mouse, or other device in control space. Our emphasis will
be on interaction techniques for very large displays where widely varying levels of gain
are often required. We will demonstrate that two-part models can sometimes describe
actual data significantly better than their one-part counterparts.

Fitts (one-part) MT = a + b log2

(
A
W

)
(1)

Shannon (one-part) MT = a + b log2

(
A
W

+ 1
)

(2)

Welford (two-part) MT = a + b1 log2(A) − b2 log2(W) (3)
Shannon-Welford (two-part) MT = a + b1 log2(A + W) − b2 log2(W). (4)

We first explore the space of models of pointing performance. The two axes we con-
sider are degrees of freedom (one-part or two-part) and information-theoretic interpre-
tation (Fitts or Shannon). We discuss our four candidate formulations (Equations (1)–
(4)), and how they fit into the 2 × 2 matrix of pointing models. Using our different
candidate formulations, we perform a reanalysis of data obtained from other re-
searchers. This reanalysis serves to frame our own expectations and a new exper-
iment. The reanalysis demonstrates that one-part models (Equations (1)–(2)) break
down when describing pointing performance on some computing devices, and that the
breakdown depends on the control/display gain. Further reanalysis demonstrates that
two-part formulations (Equations (3)–(4)) can correct for the limitations of the one-part
formulations. To conclude the reanalysis, we illustrate how limitations in experimen-
tal design and analysis can conceal shortcomings of one-part models. Motivated by the
reanalysis, we then present results from a new experiment that investigated distance
pointing on a very large wall display. Our new experimental results along with the re-
sults of the reanalysis indicate that two-part formulations are able to model pointing
performance significantly better than do their corresponding one-part formulations,
and that the relative contributions of movement amplitude A and target width W to
movement time do indeed vary with gain.

The Fitts’s Law model of pointing performance [Fitts 1954] has proven to be ex-
tremely robust. As Pratt et al. [2007] point out, it has been applied to physical pointing
underwater [Kerr 1973], in near-zero gravity [Fowler et al. 2008], with microscopic tar-
gets [Langolf et al. 1976], and even pointing with one’s feet [Hoffman 1991]. Fitts’s Law
has found a home in HCI, with a nearly thirty-year legacy [Soukoreff and MacKenzie
2004]. When evaluating new pointing devices or new display form factors one of the
first research tasks is often to perform a Fitts’s Law evaluation in order to produce
a predictive model of performance and determine throughput for the particular ap-
proach. One important factor influencing pointing performance that is unique to com-
puter interaction is control/display gain. The parameters of a Fitts pointing model are
often found to vary depending on the gain level used [Arnaut and Greenstein 1990;
Casiez et al. 2008; MacKenzie and Riddersma 1994; Sandfeld and Jensen 2005], in
addition to other factors such as the pointing device used.

However, there are exceptions to Fitts’s Law. Not long after Fitts’s original paper,
Welford [1971] observed that some Fitts-like tasks produce data that does not follow
Fitts’s model. Welford proposed an alternate two-part model to accommodate this de-
viation from expected performance. The new formulation allows for independent con-
tributions of movement amplitude A and target width W to movement time. Rather
than only considering the ratio of A and W captured in Fitts’s “index of difficulty” as
the sole independent variable, there are instead two independent variables, A and W,
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that determine movement time. We discuss this in detail in Section 3. In their own
work identifying limitations in Fitts’s Law, Pratt et al. [2007] conclude that “it now
seems unlikely that a single equation will be able to accurately capture all aspects of
speed-accuracy trade-offs.” It is evident to us that Fitts’s Law, while widely useful and
validated, should not be taken as gospel. Alternate explanations should be considered
when appropriate.

Very large displays, where we define “very large” to mean significantly greater than
a user’s physical arm span, support a class of interactions beyond those thoroughly
explored in the Fitts’s Law literature. These interactions can be performed in midair,
using gestures or pointing, or on a surface, using a traditional device such as a mouse.
Regardless of the input method, it is often necessary for the system to support con-
trol/display gain levels much higher than in smaller display systems. These gain lev-
els are necessary in order for a user to be able to interact efficiently over the entirety
of the display surface. Many researchers have found that gain can be an influencing
factor on pointing performance. We thus felt it important to explore the appropriate-
ness of different pointing models for these new display form factors over their larger
ranges of relevant control/display gain values. Accurate pointing models can help us
determine which devices are well-suited for use. They can also guide designers in
the implementation of specific interaction techniques and inform the positioning and
sizing of on-screen display elements.

We summarize here the contributions of this article in point form.

(1) We establish a matrix with two axes that defines a space of models of pointing per-
formance. The axes are degrees of freedom (one-part vs. two-part) and information-
theoretic interpretation (Fitts vs. Shannon).

(2) We introduce a new two-part formulation, MT = a + b1 log2(A + W) − b2 log2(W)
that takes inspiration from Shannon information theory, but also separates the
contributions of A and W to movement time as with Welford’s formulation.

(3) We establish the equivalence of Welford’s two-part formulation to a linear version
of a formulation due to Kopper, and demonstrate the importance of a constant k
in characterizing the relative contributions of movement amplitude A and target
width W to movement time.

(4) In a reanalysis of data from other researchers, we show one-part formulations
(i.e., Fitts and Shannon formulations) to be inadequate in modeling some pointing
tasks.

(5) In the same reanalysis, we demonstrate that two-part formulations (i.e., Welford
and Shannon-Welford) significantly outperform their one-part counterparts in de-
scribing some of the data, especially for mouse pointing on large displays. We also
determine empirically that the constant k appears to vary linearly with gain.

(6) We reveal shortcomings in how Fitts’s Law has historically been applied in the
HCI community, and provide recommendations on how to design and analyze the
results of a pointing evaluation.

(7) In a new experiment, we investigate physical pointing on a large display. Two-part
models are shown to significantly outperform their one-part counterparts, and k is
found to vary linearly with gain. These results are consistent with our reanalyses
of data from other researchers.

The next section of this article reviews the relevant literature. The four formula-
tions are explored in Section 3. Section 4 presents the findings from our reanalysis
of previous studies and Section 5 describes a new study designed to test hypotheses
that arose during the reanalysis. We present conclusions and suggestions for future
research in Section 6.
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Throughout this article we adopt the recommendation of Strunk and White [1979]
concerning the possessive form of the proper singular noun “Fitts” when referring to
work by Paul M. Fitts. Some readers may prefer nonstandard alternatives.

2. RELATED WORK

Relevant related work lies in the areas of large display research and Fitts’s Law point-
ing research. We review both of these in this section.

2.1 Large Display Research

The work described in this article was largely driven by our interest in very large dis-
play interaction. While large displays are increasingly the topic of research, and are
beginning to be widely deployed, work in understanding pointing performance with
these new form factors is ongoing. Interaction with large displays is sometimes char-
acterized by widely varying levels of control/display gain, in order to support both
accurate localized input and the ability to interact over large distances. It also fre-
quently involves input from a distance, meaning that a user is located out of physical
reach of the display. These conditions, which do not exist for most traditional com-
puting interaction scenarios, may result in pointing performance that deviates from
established empirical models.

Two categories of large display research are relevant. The first investigates the
nature of large physical surfaces and how they motivate the need for, and drive the de-
sign of, large interactive surfaces. The second investigates specific interactive surface
systems and techniques.

The deployment of large interactive displays is driven by the observation that large
physical surfaces are themselves useful. Investigations of how large physical surfaces
are used in the real world often inform the design of interactive systems [Tang et al.
2009]. Related to the importance of large physical surfaces, it has been argued that
the widespread deployment of wall-sized blackboards in the 19th century, replacing
smaller individual slates, was a critical advancement in classroom technology [Bux-
ton 2008]. Other large surfaces, such as desks, also play important roles in every-
day life. The organization of information on desks by individuals has been examined
closely [Malone 1983], and it has been shown that spatial organization on large sur-
faces is important in supporting collaborative processes [Scott et al. 2004]. The prop-
erties of physical surfaces that lend themselves to certain tasks are also possessed by
large interactive surfaces. Rogers and Lindley [2004] examined the advantages and
disadvantages of both table and wall surfaces, and found each of them to be suitable
for different tasks. They found that large wall displays support collaboration of dy-
namically changing groups and giving presentations to audiences.

Large electronic surfaces offer benefits over physical surfaces because of their
additional computational and interactive capabilities. Examples of research systems
that center around the use of large display surfaces include Flatland [Mynatt et al.
1999], the Responsive Workbench [Agrawala et al. 1997], and Dynamo [Izadi et al.
2003]. There is also a large collection of specialized interaction techniques, such as
Drag-and-Pop [Baudisch et al. 2003], Frisbee [Khan et al. 2004], text input tech-
niques [Shoemaker et al. 2009], the Vacuum [Bezerianos and Balakrishnan 2005], and
body-centric interaction [Shoemaker et al. 2007, 2010], that address issues particular
to large displays, and can potentially be integrated into a variety of systems.

In general, large displays have been found to be very useful in supporting specific
classes of tasks, such as public sharing of media [Brignull et al. 2004], group awareness
management [Huang and Mynatt 2003], and brainstorming [Cherubini et al. 2007].
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2.2 Fitts’s Law for Computer Pointing

Fitts’s Law [Fitts 1954] was originally developed as a tool for modeling the perfor-
mance of human physical pointing tasks, such as reciprocal tapping. It was later
applied to pointing on a computer display by Card et al. [1978]. The empirically
determined parameters of a Fitts model for computer pointing depend on the device
used. Researchers have performed evaluations of numerous approaches, including
traditional mouse, pad, and trackball devices [Epps 1986], stylus input [Forlines
and Balakrishnan 2008], direct touch on tables [Forlines et al. 2007], and pointing
with a laser pointer [Myers et al. 2002]. Researchers have also extended Fitts’s Law
to special cases. Variations have been developed for 2-D pointing [MacKenzie and
Buxton 1992], 3-D pointing [Grossman and Balakrishnan 2004], pointing to expanding
targets [McGuffin and Balakrishnan 2005], and pointing with snapping [Fernquist
et al. 2011], among others. Researchers have even investigated such subtle points as
the impact of cursor orientation on performance [Po et al. 2005], and the independence
of throughput from the speed/accuracy tradeoff [MacKenzie and Isokoski 2008].

There are still open questions, however, regarding the limits of Fitts’s Law in real
world application. Pratt et al. [2007] discovered that allocentric information can mod-
ulate pointing performance. They found that when an array of targets is visible, the
time taken to point to the last target in the array is shorter than predicted by Fitts’s
Law, and that pointing to the last target can be faster than pointing to closer targets in
the array. This suggests that there is more to pointing than the low-level motor move-
ment modeled by Fitts’s Law. Furthermore, Keulen et al. [2002] identified multiple
reference frames used by the brain in reaching tasks, where very different mental pro-
cesses are used for pointing at a distance as compared to up close. This might suggest
that different pointing models could be necessary to describe pointing at a distance,
which is very relevant to large displays, versus pointing within physical reach, as is
common on smaller displays.

Researchers regularly propose variations to Fitts’s Law, or even entirely differ-
ent models of pointing performance. Examples include an extension to Fitts’s Law
that incorporates classic control theory [Radix et al. 1999], an incorporation of gain
into the Fitts’s model for computer pointing [Johnsgard 1994], and a Fitts variant
incorporating a tremor constant for modeling pointing to very small targets
[Chapuis and Dragicevic 2011]. Older models, including those by Woodworth [1899]
and Hollingworth [1909], as well as more recent models, such as by Schmidt et al.
[1979], have also been proposed, but have largely been overshadowed by Fitts’s Law.

3. ONE-PART AND TWO-PART MODELS OF POINTING PERFORMANCE

Many variants of Fitts’s Law have been proposed in the literature. In this section we
discuss the four formulations (Equations (1)–(4)) that we will focus on in this article,
and delve into details relevant to our work.

We define one-part formulations (Equations (1)–(2)) to be those where the model de-
pends only on the ratio of movement amplitude (A) and target width (W), but not their
absolute values.1 The best-known one-part formulation is Fitts’s Law2 (Equation (1)),
which defines movement time as depending on A and W, as well as two experimentally
determined constants, a and b . As with all of the one-part models we consider, in the
Fitts formulation it is the dimensionless ratio of A and W that matters; the individual
values of A and W are not in isolation important.

1One-part models have two degrees of freedom, because they also incorporate an additive constant in addi-
tion to a multiplicative constant.
2An alternate form of Fitts’s Law is MT = a+b log2 (2A/W), which is functionally equivalent to Equation (1),
except that applying it will result in a different a constant.
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Table I.

A 2 × 2 matrix of the pointing models considered in this article. The axes are
the number of parts (one or two) in a formulation, and the information-theoretic
interpretation (Fitts or Shannon). Equations in the same cell are mathematically
equivalent. When k is used, it is defined as k = b2/b1, as described in Section 3.2.

One-Part Two-Part

Fitts
a + b log2

(
A
W

)
(Eq. (1)) a + b1 log2(A) − b2 log2(W) (Eq. (3))

a + b log2

(
A

Wk

)

Shannon
a + b log2

(
A
W + 1

)
(Eq. (2)) a + b1 log2(A + W) − b2 log2(W) (Eq. (4))

a + b log2

(
A+W

W

)
a + b log2

(
A+W
Wk

)

Soukoreff and MacKenzie [2004] have promoted the use of a one-part formulation
(Equation (2)) based on an alternate interpretation of the information-theoretic roots
of Fitts’s Law. They argue that the additive constant of one within the log term of ID is
a more faithful transfer of Shannon’s information theory, although Drewes [2010] has,
perhaps controversially, questioned this claim. Regardless, when modeling real-world
data, the Shannon formulation often produces better R2 coefficient of determination
values than does the Fitts formulation.

Debating the relative virtues of the Fitts (Equation (1)) and Shannon (Equation (2))
models is beyond the scope of this article. In our analysis we will make use of both
formulations, because these are the two most commonly used one-part formulations
found in the literature.

We define two-part formulations (Equations (3)–(4)) to be models that allow for sep-
arable contributions of A and W to movement time.3 By separable, we mean that
the individual values of A and W are of interest, rather than just their ratio A/W,
and thus the contributions of A and W to movement time can be weighted with their
own constants. Welford introduced his two-part4 formulation (Equation (3)) to account
for deviations from Fitts’s Law that he observed in data collected from an improved
version of Fitts’s original experiments [Welford 1971, Figure 5.8 on page 158 of the
“reprinted with corrections” edition of his 1968 book]. Welford’s two-part formulation
has been largely overlooked in the HCI literature, but there is work, including that by
Wobbrock et al. [2008], that suggests a need for considering A and W independently
in modeling performance. We think Welford’s model is potentially powerful in its gen-
erality, especially when applied to interaction with large displays.

We introduce in this article a variation on Welford’s two-part model, which we will
refer to as the Shannon-Welford formulation. This formulation (Equation (4)) combines
aspects of the one-part Shannon (Equation (2)) and the two-part Welford (Equation (3))
formulations. The mapping of noise and signal from information-theoretic origins to
movement amplitude and target width are the same as with the Shannon formula-
tion, but signal and noise are broken into independent terms with their own constants
as with the Welford formulation. Along with existing formulations from the literature,
this new formulation completes the space of models covering the axes of degrees of free-
dom (one-part vs. two-part), and information-theoretic interpretation (Fitts vs. Shan-
non), as we will see later in our summary of models and as outlined in Table I.

3Two-part models have three degrees of freedom. Two are multiplicative constants related to A and W, and
the third is captured in the additive constant.
4Welford also has a one-part formulation, MT = a + b log2 (A/W + 0.5), not to be confused with his two-part
formulation. We do not consider his one-part formulation, as it is not as widely used as the other Fitts and
Shannon one-part formulations.
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3.1 The Validity of Two-Part Models in a Fitts Context

There is some disagreement within the research community regarding the validity
of two-part models in the Fitts’s Law context. The issue is whether or not Fitts’s ID
(index of difficulty) can be considered in comparison to its components of A and W.
Mathematically, ID is clearly calculated using A and W, but some argue that once ID
has been decomposed into A and W, we have an alternative to Fitts’s Law, rather than
a more general extension of it. Referring to the parameters ID, A, and W, Guiard
[2009] states that “. . . it is logically unsound to inquire into three separate causal in-
fluences in a Fitts’s Law experiment.” He believes that A, W, and A/W form a trio
with only two degrees of freedom,5 and therefore it does not make sense to investigate
three different causal influences as if they were independent.

In his paper, Guiard discusses both a one-part interpretation, where A and W rep-
resent “just the handles we need to control the ratio,” and a two-part interpretation,
where A and W are independent factors and movement time “depends on both factors.”
Guiard sees this as an “inescapable choice between two mutually exclusive theoretical
views of Fitts’[s] [L]aw, which disagree about something quite crucial – the number
and the identity of the independent variables.” We will return later to this when we
consider some of the other observations made by Guiard.

Welford argues directly that separating ID into A and W is a valid approach, and
that doing so results in a model that is related to the Fitts’s model, but with an extra
degree of freedom. In his book, on page 156, Welford states that “two control processes
or phases ought perhaps to be distinguished: a faster distance-covering phase and a
slower phase of ‘homing’ on to the target” [1971]. We agree with Welford’s stance, and
our comparisons of one- and two-part models are inspired by his work. Ultimately, it
may require some time before a resolution is reached between Guiard’s and Welford’s
epistemological differences. Our investigation is more pragmatic and focuses mostly
on the ability of two-part models to explain the effect of gain, something that neither
Welford nor Guiard [2009] explicitly address.

3.2 Pointing at a Distance and the k Value

Kopper et al. [2010] examined distance pointing with a laser pointer on large displays.
They validated a two-part model of performance based on angular measurements α for
movement amplitude and ω for target width (Equation (5)). We examine their model
here, and relate it to existing two-part models.

MT = a + b log2

(
α

ωk + 1
)

. (5)

Kopper et al.’s use of angular measurements is consistent with their technique,
where rotation of the input device, rather than translation, results in cursor motion.
The exponent k they introduce allows α and ω to have separate degrees of impact on
movement time. We call this exponent the “Kopper k.” A formulation analogous to the
Kopper angular formulation can be constructed using linear units (Equation (6)).

MT = a + b log2

(
A

Wk + 1
)

. (6)

In this version of the Kopper formulation, linear amplitude A replaces angular
α, and linear width W replaces angular ω. A second formulation is also possible

5There are two senses in which the term “degrees of freedom” is used. Guiard uses it here in the sense
of number of input variables that can be independently adjusted. The other sense, which we use, is the
statistical notion of the number of parameters in a mathematical model that maps input variables to output
values.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 4, Article 28, Publication date: December 2012.



28:8 G. Shoemaker et al.

(Equation (7)), where we omit the Shannon-like “plus one” term. This makes it similar
in form to Fitts’s model, and allows us to compare the two directly.

MT = a + b log2

(
A

Wk

)
. (7)

An important observation, not noted by Kopper et al., is that the Fitts-inspired lin-
ear analog of their formulation (Equation (7)) can be derived directly from Welford’s
two-part formulation (Equation (3)), meaning that the two formulations are mathe-
matically equivalent. The k and b values in the linear version of Kopper’s formula-
tion are equal to b2/b1 and b1 from Welford’s formulation, respectively. We therefore
have a second means of expressing Welford’s two-part formulation, with a different
choice of constants. Algebraic equivalence of the two expressions is demonstrated by
the straightforward derivation in Equation (8).

MT = a + b1 log2(A) − b2 log2(W)

= a + b1

[
log2(A) − b2

b1
log2(W)

]

= a + b1
[
log2(A) − log2(Wb2/b1 )

]

= a + b1log2

(
A

Wb2/b1

)

= a + b1log2

(
A

Wk

)
. (8)

The significance of the linear (nonangular) Kopper formulation to our work lies in
the exponent k. The exponent k is a single parameter that conveniently encapsulates
the relative magnitudes of the separable contributions of the independent variables A
and W to the overall movement time. If experimental results determine that k = 1 then
b1 = b2 and the model is simply Fitts’s Law (without the factor of 2 multiplying A that
Fitts originally had, an inconsequential detail for our current discussion), and Fitts’s
Law will model the experimental data as well as does the two-part model. However, the
more that k deviates from unity, as determined by the experimental data, the worse
Fitts’s Law will perform at modeling results. A k value greater than one (b2 > b1)
indicates that the impact of target width is overshadowing the impact of movement
amplitude, whereas a k value less than one (b1 > b2) suggests the opposite. Thus k is
useful not only for gauging the relative contributions of A and W, but is also a good
indicator of the applicability of Fitts’s formulation. We adopt the use of k for much of
the remaining discussion in this article to illuminate the separable contributions of A
and W.

It is important to note that we are not introducing a new parameter or degree of free-
dom with our use of k, merely an equivalent reformulation that replaces the Welford
parameters b1 and b2 with the parameters b and k.

3.3 Unit Dependence in Two-Part Models of Pointing

The empirically determined constants of a one-part model are independent of the
choice of units (e.g., cm or mm) used in measurement. This is not the case using a
two-part model such as Welford’s. For example, in Equation (9) we see that the one-
part Fitts formulation is not impacted by changing units used in measurement (rep-
resented by scaling A and W by some multiplicative constant s), because the scaling

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 4, Article 28, Publication date: December 2012.



Two-Part Models Capture the Impact of Gain on Pointing Performance 28:9

constants simply cancel out. The empirically derived constants a and b will therefore
be the same regardless of units used.

MT = a + b log2

(
sA
sW

)

= a + b log2

(
A
W

)
. (9)

In two-part formulations, however, the units chosen will impact the derived con-
stants. When using Welford’s two-part formulation, a multiplicative constant s applied
to measurements will result in a change in the empirically determined additive con-
stant a, as demonstrated in the derivation in Equation (10).

MT = a + b1 log2(sA) − b2 log2(sW)
= a + b1(log2 (A) + log2 (s)) − b2(log2 (W) − log2 (s))
= (a + b1 log2 (s) − b2 log2 (s)) + b1 log2 (A) − b2 log2 (W)
= a′ + b1 log2 (A) − b2 log2 (W). (10)

A multiplicative scale factor s to adjust for units results in a new different constant,
a′ = a + b1 log2 s−b2 log2 s. Importantly, however, the b1 and b2 constants, and therefore
the k value, are all independent of the units chosen and thus do not depend in any way
on the scale factor s. Thus the relative magnitude of the separable effects of A and W
as captured in k is independent of the units chosen to represent movement amplitude
and target width.

This explanation glosses over an important point. Both A and W possess units of
distance, yet appear within logarithms. This is not consistent with their intended use
as dimensionless values. It is desirable to treat log2 A and log2 W similarly to the index
of difficulty (ID) in Fitts’s formulation, where ID = log2 (A/W) is dimensionless. Fortu-
nately, as Graham [1996] explains, Welford anticipated this objection and postulated
nominal values A0 and W0 that “normalize” A and W respectively and eliminate the
problem of logarithmic dimensions by turning all of the arguments for the logarithm
functions into dimensionless values (pure numbers).

MT = a + b1 log2

(
A
A0

)
− b2 log2

(
W
W0

)
. (11)

We will assume that suitable constants A0 and W0 are used as in Equation (11),
but will simply write Equation (3) with the understanding that suitable normalization
has taken place and that only the intercept value a might be affected by the choice of
normalization. This is consistent with much of the literature.

3.4 Comparing Models Statistically

Throughout this article we compare one-part and two-part models with the goal of de-
termining which are more appropriate for application to certain data sets. Soukoreff
and MacKenzie [2004] observed that two-part models will inevitably perform better
(as measured by an R2 coefficient of determination) than their one-part equivalents,
because the two-part models incorporate an extra degree of freedom. It would be an
error to select a two-part model simply because it produces a better fit than a corre-
sponding one-part model. It is necessary, instead, to determine whether the two-part
model genuinely captures aspects of the data that a one-part model cannot, rather
than just providing a better fit due simply to the extra degree of freedom.

Several tests are available for comparing linear regression models, including the
F-test [Draper and Smith 1998], the Akaike Information Criterion (AIC) [Akaike
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1974], and the Schwarz Criterion (also known as the BIC) [Schwarz 1978]. The F-
test provides a means of testing the hypothesis that a model with more degrees of
freedom describes the data significantly better than a model with fewer degrees of
freedom. While the AIC and BIC tests are suitable tools for model selection they are
not suitable for hypothesis testing. That is, they will not determine if a higher degree-
of-freedom model is significantly better at modeling the data compared to a lower
degree-of-freedom model. Because of this, the F-test is the only test appropriate for
our purposes.

One limitation of the F-test is that it can only compare models that are nested.
Models are nested if the greater degree-of-freedom model can be made equivalent
to the lesser degree-of-freedom model by enforcing an additional constraint. For ex-
ample, the Shannon-Welford model is equivalent to the Shannon model if we en-
force the constraint that b1 = b2. Similarly, the Welford and Fitts formulations are
nested using the same constraint. Thus, in our analyses we group our comparisons
into Fitts-inspired models (Fitts vs. Welford) and Shannon-inspired models (Shannon
vs. Shannon-Welford). The F-test that we use is F(p2 − p1, n − p2), where p2 and p1
are the number of parameters in the models (p1 is the number of parameters in the
simpler nested model) and n is the number of sample points. A p-value of .05 or less
is considered significant when comparing the relative explanatory power of two nested
models with the F-test. We are comparing two-part models with three degrees of free-
dom against nested one-part models with two degrees of freedom, so p2 = 3 and p1 = 2.

3.5 Summary of Pointing Models

The four models of pointing performance we focus on in this article are summarized
in Table I using a 2 × 2 matrix. The first axis of the matrix, degrees of freedom, sepa-
rates models into one-part and two-part formulations. In this article we will arrive at
the conclusion that two-part models of pointing performance are sometimes necessary
for modeling computer pointing. The second axis, that of information-theoretic inter-
pretation, separates models by how the information-theoretic concepts of “signal” and
“noise” have been mapped to the physical quantities of movement amplitude (A) and
target width (W). Past work has argued the merits of both the Fitts and Shannon in-
terpretations, and it has been shown that different interpretations can result in small,
but sometimes important, differences in model fit (R2 values). We thus consider both
interpretations for completeness.

4. A REANALYSIS OF POINTING EXPERIMENTS

One-part models of pointing based on Fitts’s formulation have garnered much more
attention in the HCI literature than have two-part models such as those by Welford
and Kopper et al. This may be because one-part models appear to serve us well and
they are simpler and more concise than two-part models. One might well ask, is there
a need for two-part models of pointing performance? In order to help answer this ques-
tion we undertook a reanalysis of published experimental data. We looked at aspects
of the data from three previous studies that were left unexplored by the authors of the
papers we examined. We found that one-part models possess previously unappreciated
limitations, and that two-part models of pointing performance frequently perform sig-
nificantly better than do their one-part counterparts. We extended the reanalysis by
reviewing a set of 19 papers to see whether the lack of appreciation in the community
for two-part models might be due to the experimental designs and analyses that were
employed.
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Fig. 1. Movement time results for all A and W combinations from the Graham data at G = 1. Data points
are the same in both graphs. Movement times with identical ID can differ, depending on A and W. This is
in violation of Fitts’s Law. Graphs adapted from Graham [1996].

4.1 Physical Pointing on a Small Display

In his doctoral dissertation Graham described a series of experiments dealing with
indirect (virtual) control of an on-display pointer using a motion-tracked finger
[Graham 1996]. A subset of his results have been reported in the peer-reviewed lit-
erature [Graham and MacKenzie 1996]. His first experiment investigated pointing at
three levels of control/display gain on a traditional-sized display. In analyzing his re-
sults for the lowest gain level (G = 1), Graham found that Fitts’s formulation did not
accurately model pointing because of a separable effect of A and W impacting perfor-
mance. A visualization of Graham’s results (Figure 1) reveals a pattern very similar
to that shown by Welford in Figure 5.8 on page 158 of his 1971 book. Movement time
increases roughly linearly with ID within either a single A or W value, but not across
changes in both A and W values. Graham found that Welford’s two-part formula-
tion (Equation (3)) was necessary to account for this pattern, and to accurately model
movement time. The validity of applying this two-part formulation was further sup-
ported by Graham’s analysis of hand velocity and acceleration profiles during pointing,
which again revealed separable effects of A and W in different temporal segments of
the motion.

The fact that both Welford and Graham found a two-part formulation to be neces-
sary for accurately modeling performance of their respective real-world and virtual
pointing tasks is intriguing. But what does this mean for other forms of computer
pointing? Fitts’s formulation has repeatedly been found to accurately model pointing
on a computer. It would be surprising to find limitations to Fitts’s Law in a computer
pointing context.

Again, Graham has already provided part of the answer in his dissertation [Graham
1996]. He makes note of several facts that leave open the possibility of discovering
situations where Fitts’s Law may not suffice, and where two-part models may instead
be appropriate. First, he notes that even for cases where there is a separable effect
of A and W, the Fitts formulation may hold for certain subsets of the data. As an
example, if Graham had run his experiment either with a single A and multiple W
values, or with a single W and multiple A values, Fitts’s Law would have appeared
to hold. This is evident from Figure 1. Second, the treatment of data during analysis
can compromise one’s ability to recognize a separability of A and W. As an example,
Figure 2(a) shows a regression analysis of data points from the Graham experiment
that are averaged within ID values, whereas Figure 2(b) shows a regression analysis
of the same data, but where data points are not averaged within ID values but are
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Fig. 2. An example of a possible pitfall in analyzing Fitts’s Law experimental results. A regression analysis
of movement times for all A and W combinations from the Graham data (G = 1) make evident a poor fit,
whereas analyzing results averaged within ID values conceals the poor fit. Graphs adapted from [Graham
1996].

averaged within distinct pairs of A and W values. In this case averaging data points
within ID values conceals the poor fit of the data to a linear function, a danger that
should be avoided.

The importance of careful experimental design and analysis is backed up by argu-
ments made by Guiard [2009], who notes that standard Fitts’s Law experimental de-
signs tend to contain a confound related to the concomitant variation of A and W with
ID. Including all individual pairs of A and W in an analysis addresses the problems
identified by Graham, although Guiard offers another approach based on the notions
of form and scale as alternative characterizations for the degrees of freedom inherent
in pointing tasks. Unfortunately, neither approach is standard practice in HCI.

It is interesting that Guiard shows data from a disc transfer study by Fitts [Guiard
2009, Figure 3] that is very similar to our Figure 1 from Graham’s data. In both cases
lines of equal A are roughly parallel to each other but have different slopes than the
lines of equal W that are themselves roughly parallel to each other (only the lines of
equal W are shown in the figure in Guiard’s paper).

A conclusion that can be reached from Graham’s discussion of pitfalls is that past
experiments that found Fitts’s Law to correctly model pointing may have been masking
separable effects because of limitations in either design or analysis.

Graham unfortunately only analyzed the applicability of Fitts’s Law at a single
level of gain. We further analyzed the data from Graham’s experiment.6 Results of
our linear-regression analysis using one- and two-part Fitts-inspired models are sum-
marized in Table II. Results using one- and two-part Shannon-inspired models are
summarized in Table III. The k values (k = b2/b1) for the two-part models are shown
for each gain level, as are the F-test results testing the hypothesis that a two-part
model describes the data better than a one-part model.

There is no universally accepted threshold for a good R2 value, but MacKenzie’s
[1992] suggestion of R2 = 0.9 as a guideline when evaluating Fitts’s Law results has
been used in the literature, and therefore we also employ it. By this criterion, the
two-part models produce a good fit to the data at all three levels of gain, whereas
the one-part models only produce a good fit at the highest level of gain. The F-tests

6We thank Evan Graham for providing us with access to his original data and also to the team of technical
staff who were able to retrieve the data from long-obsolete backup media.
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Table II.

Modeling of movement time from the Graham data using the Fitts formulation and the Welford two-part
formulation. For the Fitts formulation R2 decreases with lower gain. For the Welford formulation R2 is
consistently good. An F-test indicates that the two-part model (Welford) describes the data significantly
better than the one-part model (Fitts) at all levels of gain. Data is from Graham [1996].

Fitts Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

1 0.365 0.117 0.759 0.134 0.153 0.082 0.536 0.967 99.40 <0.001 yes
2 0.346 0.111 0.789 0.018 0.151 0.070 0.464 0.981 108.66 <0.001 yes
4 0.349 0.112 0.952 0.189 0.136 0.090 0.662 0.992 28.88 0.002 yes

Table III.

Modeling of movement time from the Graham data using the Shannon formulation and the Shannon-
Welford formulation. For the Shannon formulation R2 decreases with lower gain. For the Shannon-
Welford formulation R2 is consistently good. An F-test indicates that the two-part model (Shannon-
Welford) describes the data significantly better than the one-part model (Shannon) at all levels of gain.

Shannon Shannon-Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

1 0.384 0.139 0.761 0.006 0.182 0.111 0.610 0.969 106.10 <0.001 yes
2 0.364 0.132 0.793 0.107 0.180 0.099 0.550 0.985 136.24 <0.001 yes
4 0.372 0.133 0.946 0.090 0.160 0.115 0.719 0.983 13.41 0.011 yes

Fig. 3. The k values for the Graham data as they vary with gain.

indicate that the two-part formulations model the data significantly better at all levels
of gain compared to the corresponding one-part formulations, suggesting that two-part
models capture aspects of the data that one-part models do not.

The relationship of k to G in the Graham data is visualized in Figures 3(a) and 3(b).
No clear pattern is evident. A linear regression of the data points7 for k produced poor
R2 values of 0.519 and 0.593. It is unsurprising that no clear trend emerged, however.
Just three gain values were investigated, limiting the number of data points, and only
a small number of participants (six) were used in the experiment. We suspect that
a more comprehensive experiment that includes a larger number and wider range of
gain values might very well reveal a pattern of k depending on G.

The reanalysis of Graham’s data leaves some open questions. Most importantly,
Graham’s results relate to indirect (virtual) finger pointing mapped to an on-screen
cursor. However, the mouse is a much more common input mechanism for computers.
It is thus desirable to investigate whether we can identify a separable contribution of

7Performing a linear regression on three data points is questionable practice. We do so to be consistent with
more robust analyses appearing later in the article.
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Fig. 4. Movement time results for all A and W combinations for the Casiez data at G = 2. Data points are
the same in both graphs. This is similar to the pattern in Figure 1.

A and W to pointing time, similar to what Graham found, in a traditional mouse input
scenario.

4.2 Mouse Pointing on a Large Display

Casiez et al. [2008] recently performed a very thorough analysis of mouse pointing
performance that clarifies the landscape of both small and large display pointing. They
evaluated pointing performance for multiple C/D gain levels as well as for different
levels of pointer acceleration, on both small and large displays. They examined a
wide range of ID values, using a variety of A and W pairs for each ID, and included
every combination of A and W in their analysis. In their first experiment on small
display interaction they analyzed each gain level separately using the Fitts one-part
formulation, and found regression R2 values ranging from 0.956 to 0.984, indicating
a close match between model and measurements. However, the results from their
second experiment, performed on a large display, found regression R2 values ranging
from 0.577 to 0.959, with a roughly direct relationship between gain and R2. Casiez et
al. argue this relationship was due to excessive mouse clutching at low gain levels. It
is possible that clutching is a contributing factor, however, based on what we learned
from Kopper and Graham, we wanted to see if we could accurately model the data
using a two-part formulation. Towards this goal we performed a further analysis of
the large display Casiez data.8

We first produced two visualizations of movement times for individual A and W
pairs for the G = 2 condition, which was the condition with the worst R2 in the orig-
inal analysis. Figure 4 shows that when lines are drawn connecting data points with
the same A values, each line is approximately straight and parallel to the other lines,
and when the points with the same W values are connected, the lines are again approx-
imately straight and parallel. It is clear that a single line will be unable to accurately
model all data points. This is the same pattern found by both Welford and Graham in
their data (and also by Guiard in Fitts’s data, although Guiard did not draw explicit
attention to the lines of equal A values). This is evidence of a separable contribu-
tion of A and W to movement time. Welford and Graham both argued for a two-part
formulation (Equation (3)) on this basis.

Results of a linear regression analysis of the Casiez data are shown in Table IV
and Table V. Using MacKenzie’s criteria of R2 > 0.9 as a threshold for model fit, the
one-part Shannon and Fitts models only produce good fits at gain levels 16 and 20.

8We thank Géry Casiez for providing us with access to his data.
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Table IV.

Modeling of movement time from Casiez et al. data using the Fitts and Welford formulations R2 values
for the Fitts formulation decrease at lower gain, but the Welford formulation is consistently good. An
F-test of the models indicates that the Welford model is significantly better than the Fitts model at all
levels of gain except 20. The data was provided by Casiez et al.

Fitts Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 −4.125 0.950 0.577 −15.286 1.742 0.159 0.091 0.977 85.79 <0.001 yes
5 −1.405 0.412 0.734 −4.300 0.628 0.196 0.312 0.935 15.56 0.011 yes
8 −0.841 0.308 0.805 −2.608 0.444 0.172 0.387 0.961 19.64 0.007 yes

12 −0.431 0.243 0.891 −1.320 0.317 0.169 0.533 0.974 15.71 0.011 yes
16 −0.393 0.232 0.936 −1.009 0.287 0.177 0.632 0.989 22.50 0.005 yes
20 −0.569 0.264 0.959 −0.876 0.301 0.226 0.750 0.978 4.47 0.088 no

Table V.

Modeling of movement time from Casiez et al. data using the Shannon one-part and Shannon-Welford
two-part formulations R2 values for the Shannon formulation decrease at lower gain levels, but the
Shannon-Welford formulation is consistently good. An F-test of the two models indicates that the
Shannon-Welford model is significantly better than the Shannon model at all levels of gain except 20.
The data was provided by Casiez et al.

Shannon Shannon-Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 −3.259 0.960 0.577 −15.443 1.760 0.177 0.100 0.977 88.47 0.0002 yes
5 −1.029 0.417 0.734 −4.358 0.635 0.203 0.320 0.936 15.85 0.011 yes
8 −0.560 0.311 0.805 −2.649 0.448 0.177 0.395 0.962 20.46 0.006 yes

12 −0.209 0.246 0.892 −1.348 0.320 0.172 0.538 0.974 15.48 0.011 yes
16 −0.181 0.234 0.936 −1.036 0.290 0.179 0.617 0.990 26.43 0.004 yes
20 −0.329 0.266 0.960 −0.904 0.304 0.229 0.753 0.979 4.72 0.082 no

Fig. 5. Regression R2 values as they vary with gain for the Casiez data.

In sharp contrast, the two-part Welford and Shannon-Welford models produce good
fits at all levels of gain. Furthermore, F-tests indicate that the two-part formulations
model the data significantly better than do their corresponding one-part models at all
levels of gain, except for gain 20. Figures 5(a) and 5(b) clearly show the drop-off of R2

values for the one-part models at lower gains and the consistently good R2 values for
the two-part models at all levels of gain.

As with Graham’s data, the k values serve to quantify the separability of contribu-
tions of A and W. We further analyzed these values with the goal of determining a
pattern. The k values for each gain level of the Casiez data are shown in Figure 6,
with results shown for analyses using both the Welford and Shannon-Welford models.
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Fig. 6. The k values for the Casiez data.

In both cases the k values increase monotonically with gain, and the dependence of
k on gain appears to be linear. To confirm this hypothesis we ran a linear regression
and found the fit to be very good, R2 = 0.967 for Welford, and R2 = 0.963 for Shannon-
Welford.

Our analysis of the Casiez data revealed two valuable insights that were not dis-
cussed in their paper. First, the poor modeling of pointing performance using the one-
part formulations (i.e., Fitts and Shannon) in the large display condition is corrected
by the use of two-part formulations (i.e., Welford or Shannon-Welford), suggesting sep-
arable impacts of A and W on mouse pointing performance. Second, we discovered
that the k values vary linearly depending on gain for all the levels of gain examined
by Casiez et al.

4.3 Midair Pointing on a Large Display

The authors and their colleagues [Tsukitani et al. 2011] evaluated performance of
users in a serial 1-D pointing task on a very large wall display. The task differed from
Kopper’s in that pointing was performed by translating the hand, as opposed to rotat-
ing it. This is consistent with the input techniques investigated by Graham and by
Casiez. The displacement of the hand was magnified by a given control/display gain,
and converted into cursor motion. The researchers’ goal was to investigate the dis-
tinction between “display-space” (interaction as measured on the display) and “hand-
space” (interaction as measured in user coordinates). The experimental design was
such that the results provide a partial picture of the applicability of two-part formula-
tions to modeling pointing performance on large displays.

In the Tsukitani et al. experiment the apparatus was similar to that in Figure 8.
Users stood at one of three distances (1.0m, 2.5m, 3.25m) from a 5m×3m wall display.
The cursor was placed on the display at a location determined by a vector originating
at a point 4.0m from the display, passing through the hand of the user. The vector
origin was located at a height such that the cursor would appear near the middle of
the display when the hand was held at waist height. Effective gain values of 1.33, 2.67,
and 5.33 were computed from the projection geometry used in the experiment.

Tsukitani et al.’s original analysis using the Fitts formulation produced a good fit
to the model (R2 > 0.9), suggesting there was no need for a two-part formulation. We
delved deeper into the data, and computed linear regression results for the one- and
two-part models of both the Fitts-inspired and Shannon-inspired formulations. These
results are shown in Table VI and Table VII. When the k values for the three gain
levels are visualized (Figure 7) a pattern of k monotonically increasing with gain is
evident. This is consistent with the results of our analyses of both the Graham and
Casiez data sets. A possible reason for the good fit with a Fitts formulation is also
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Table VI.

Modeling of movement time from Tsukitani et al. data using the Fitts and Welford formulations.
Fitts Welford F-test

Gain a b R2 a b1 b2 k R2 F p sig?
1.33 0.149 0.247 0.966 −0.045 0.282 0.213 0.755 0.985 7.35 0.035 yes
2.66 0.158 0.241 0.988 0.260 0.251 0.231 0.920 0.990 2.70 0.127 no
5.33 0.105 0.270 0.975 0.428 0.266 0.273 1.026 0.976 0.22 0.645 no

Table VII.

Modeling of movement time from Tsukitani et al. data using the Shannon and Shannon-Welford
formulations.

Shannon Shannon-Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?
1.33 0.146 0.311 0.971 −0.322 0.354 0.286 0.808 0.989 10.08 0.019 yes
2.66 0.171 0.294 0.991 0.030 0.305 0.286 0.938 0.993 3.37 0.091 no
5.33 0.134 0.321 0.986 0.186 0.317 0.324 1.022 0.986 0.32 0.578 no

Fig. 7. The k values for the Tsukitani et al. data.

evident. The Tsukitani experiment only evaluated pointing at three gain levels, and
these gain levels are all close to where the regression line of best fit passes through
k = 1. This is where Welford’s formulation is effectively a one-part formulation, so
not much evidence of separability of A and W would be present. But there was some
separability, as Figure 7 demonstrates.

While the Tsukitani data reveals no strong need for a two-part formulation, we
suspect that had a larger number and wider spread of gain values been evaluated
such a need would have emerged. An experiment examining a range of gain levels
similar to those explored by Casiez et al. would be needed in order to verify this. We
describe such an experiment in Section 5.

4.4 Speculation about Limitations in Previous Work

Our conclusion that interactive computer pointing performance, in particular mouse
pointing on a large display, does not follow Fitts’s Law may be surprising. Many papers
have successfully applied Fitts’s Law to mouse pointing and other computer tasks.
Why is it that these papers did not find an effect similar to what we found? There are
several possible answers.

First, assuming that k varies with gain, for some levels of gain k will be close enough
to unity that modeling performance using Fitts’s Law produces good R2 values. It is
possible that the narrow range of reasonable gains for small display pointing are near
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the k-line’s intercept with k = 1, whereas large display pointing invites the use of a
wider range of gain values. Second, as Graham observed, experimental design and
analysis choices can serve to partially mask or even completely obscure the separable
impacts of A and W on performance, even when k is not close to one.

In order to get a clearer picture of why the shortcomings of Fitts’s Law were not pre-
viously appreciated we scrutinized the experimental design and analysis in 19 papers
directly related to device pointing drawn from a review by Soukoreff and MacKenzie
[2004]. We found that 15 of the 19 papers suffered from limitations, in either the ex-
perimental design phase or the data analysis phase, that could conceal a separable
effect of A and W. Of these 15 papers, seven [Akamatsu et al. 1995; Boritz et al. 1991;
Guiard et al. 1999; Hornof 2001; Jones 1989, 1991; MacKenzie and Riddersma 1994]
included limited combinations of A and W in their experimental designs. As evident in
Figure 1, employing only a single A value or a single W value will result in a good fit,
regardless of the independence of contributions of A and W to MT, concealing the need
for a two-part model. In addition, eight papers [Card et al. 1978; Epps 1986; Inkpen
2001; MacKenzie and Ware 1993; Mithal and Douglas 1996; Po et al. 2004; Rutledge
and Selker 1990; Zhai et al. 2003] aggregated data points in some manner based on
ID. As previously demonstrated in Figure 2, this can result in erroneously concluding
that Fitts’s Law accurately models the data. Only four of the nineteen papers [Han
et al. 1990; MacKenzie et al. 1991; MacKenzie and Buxton 1992, 1994] avoid both of
these pitfalls and thus have potential to reveal the effect through robust experimental
design and analysis.

We are not criticizing the previous research. The analyses were reasonable under
the assumption that Fitts’s Law is robust, which has been the functioning assumption
for the last several decades. However, with the realization that a two-part formulation
is sometimes more appropriate, the need to evaluate a broad range of both A and W
values becomes clear, as does the need to include each resulting A and W pair in the
analysis.

From our reanalysis and high-level review of related work, we offer recommen-
dations on designing and analyzing evaluations meant to test models of pointing
performance.

(1) Include multiple combinations of A and W values in the design, representing a
realistic range of values for the interaction in question. Ideally fully cross all A
and W values.

(2) Include multiple levels of gain. Attempt to explore the entire range of gain values
practical for use with the technique being examined.

(3) Include every individual combination of A and W in the analysis.
(4) Perform a separate analysis for every level of gain.
(5) Consider both one-part and two-part models of pointing performance, and deter-

mine if the two-part models describe the data significantly better by using appro-
priate statistical tests.

4.5 Reanalysis Conclusions

As explained earlier in this section, we performed analyses of data from two other
researchers [Casiez et al. 2008; Graham 1996], and one recent study on which the
authors collaborated [Tsukitani et al. 2011]. Those analyses serve to clarify the appli-
cability of different pointing models to different interactive scenarios.

The key insight was derived from the earlier work by Graham, who in turn was
building on Welford’s work, which was that A and W can contribute independently to
the magnitude of movement time, and that a one-part Fitts-like model where only the
ratio of A and W is considered can be inadequate for accurately describing pointing
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time. Instead, two-part formulations are often more appropriate for describing point-
ing performance on a display.

Applying this insight to other data sets helped clarify the results from those studies.
We found that recent data from Casiez et al. are best modeled using two-part formula-
tions, and that a two-part model fixes a problem of poor model fit for conditions of low
gain on large displays. We further found in the Casiez et al. data that the parameter
k appears to vary linearly with gain. These conclusions are further supported by an
analysis of results from Tsukitani et al., where we found similar patterns of k varying
with gain, although the results in this second analysis are weaker due to a lack of data
points.

We drew the following conclusions from our reanalysis.

(1) One-part models, including Fitts’s Law, do not accurately model computer pointing
performance using either a finger on a small display or a mouse on a large display,
except at some specific gain levels.

(2) Two-part models, including Welford’s, accurately model computer pointing perfor-
mance using either a finger or a mouse.

(3) The improvement of two-part models over one-part models in describing the data
is frequently statistically significant.

(4) The value of k appears to vary linearly with gain for mouse pointing on a large dis-
play. The slope and intercept of the k-line (as it varies with gain) seems to depend
on the technique.

5. EVALUATION OF POINTING PERFORMANCE ON LARGE DISPLAYS

Our reanalysis of data from other researchers lent insight into physical pointing on a
small display and mouse pointing on a large display. To aid in completing the picture,
we undertook an evaluation of physical pointing on large displays, in order to deter-
mine if a separable contribution of A and W to pointing time, and as a consequence
a need for two-part pointing models, could be identified. We used physical pointing in
part to avoid any clutching. In our evaluation we used a wide range of gain values in
addition to using multiple pairs of A and W values. The range of gain values consid-
ered (2–20) was the same as that investigated by Casiez et al. While gain values at
the upper end of this range might seem extreme, and can be difficult to manage for
some users, they are necessary in order to support interaction over the entirety of a
very large display surface. The general design of our experiment is inspired by those
of Casiez et al. and Tsukitani et al., which were discussed in the previous section.

5.1 Apparatus

As illustrated in Figure 8(a), users stood 2.5m from a large vertical glass screen ap-
proximately 5m×3m in size. The screen was rear-projected by a 4×3 array of projec-
tors, each with an 800×600 pixel resolution. The images of neighbouring projectors
overlapped 160 pixels with a blending function to minimize discontinuities due to pos-
sible misalignment. Overall resolution was 2720×1480 pixels.

Tap events were performed using the thumb (A) button on a hand-held Nintendo Wii
Remote. The Wii Remote was tracked using a Vicon motion capture system because
the native Wii Remote sensing capabilities were not accurate enough for our needs.
The Wii Remote was outfitted with reflective markers for this purpose, as shown in
Figure 8(b).

The experimental software ran on a computer running the Windows XP operating
system and was written in C# using the Microsoft XNA Game Studio library and .NET
3.5. The WiimoteLib library was used to communicate with the Wii Remote device.
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Fig. 8. The experimental apparatus.

The same computer ran the Vicon tracking software. Logging of events was performed
in real time and stored on the machine.

Tracking accuracy is important. Casiez et al. [2008] developed a model for calcu-
lating the usable range of gain values given sensing accuracy and display resolution.
With the resolution of the experimental display, and Vicon signal noise measured to
be not more than 0.07mm (the capture volume was very small, making high accuracy
possible), we applied Casiez’s model and calculated the maximum usable gain of our
apparatus to be 26. This means that every screen pixel was addressable at gain val-
ues up to 26. All values of gain investigated in the experiment (2–20) are considered
“usable” under Casiez’s criteria.

5.2 Task and Stimuli

The experimental task was a serial 1-D tapping task between two target pairs of vari-
able movement amplitude and target width, modeled closely after tasks used by Casiez
et al. [2008] and Fitts [1954]. Targets were bars both of the specified width, which
spanned the entire height of the display. Lateral translation of the user’s hand was
magnified by a given gain level, resulting in cursor motion. The cursor was a line
which similarly spanned the entire height of the display. It was decided to use a tra-
ditional 1-D task similar to what was originally used by Fitts, rather than a 2-D task
such as that defined by ISO 9241-9 [Douglas et al. 1999] because we were concerned
with the fundamental applicability of Fitts’s Law.

For each target pair a participant first tapped the start target and then performed
a sequence of eight reciprocal taps between the two targets. The active target was al-
ways blue, and the nonactive target was always grey. One target was directly in front
of the participant, while the other target was to the right of the participant at the
given amplitude. This arrangement was chosen to avoid any possible impact of cross-
lateral inhibition, which is a difficulty in motions when the hand crosses the body’s
midline [Schofield 1976]. The participant was required to correctly tap the start tar-
get to initiate the trial. Time and location for the initial tap and the following eight
taps were recorded by the software. After a tap the target briefly flashed green to
indicate success, or red to indicate an error. There was no requirement to correct
errors.

5.3 Participants

Nineteen participants (two female) were recruited through on-campus advertising. All
were right-handed, a requirement for participation in the experiment. Ages ranged
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from 20 to 42, mean 26.4, SD 5.7. All participants were regular computer users (9+
hours per week). They were compensated $10 for participating, and the half with the
best performance were later compensated an extra $10. The additional compensation
was intended to be an incentive for participants to perform well.

5.4 Design

A within-subjects design was used. The independent variables were gain G (2, 5, 8, 12,
16, 20), movement amplitude A (25cm, 50cm, 100cm, 250cm), target width W (5cm,
10cm, 20cm), and trial block B (1, 2, 3). A and W combinations were fully crossed,
except that the 250cm amplitude was only used at gains 12, 16 and 20, because it was
not reachable at lower gains. We chose an incomplete design in the interest of inves-
tigating a wider range of G, A, and W values, as demanded by our motivation. Such
a partial design has drawbacks, but it does support an investigation of parameters
outside of what would be possible with a full design.

Each gain level was presented during each block of the trials. Gain levels were
randomly ordered within every block. For each gain level each A and W pair was
presented in random order. Eight taps were performed for each A and W pair.

In summary, the experimental design was as follows.
19 participants

× 3 blocks
× (3 gains × 9 A and W combinations) + (3 gains × 12 A and W combinations)
× 8 taps
= 19 × 3 × (27 + 36) × 8 = 28,728 total taps.

5.4.1 Procedure. The experiment was performed in a single session for each partici-
pant, lasting approximately 50 minutes. Participants arrived and filled out a consent
form and a prequestionnaire gathering demographic information. They were intro-
duced to the system and the pointing task was explained. Participants were instructed
to complete the task as quickly as possible with a goal of 95% accuracy. They each prac-
ticed at least five A and W combinations (40 taps), and were invited to practice more
if they felt the need.

Participants then completed the three experimental blocks. Whenever the gain level
was changed a practice A and W pair was presented to the participant. The purpose
was to allow a participant to grow accustomed to the new gain level. The participant
was not informed that an A and W pair was a practice pair. These were presented in
the regular flow of the experiment, but the data for those pairs were not analyzed.

Between each block the participants sat at a table and played a distractor puzzle
task for three minutes. They were invited to take extra time to rest, but none did so.

After all conditions were completed each participant filled out a post-questionnaire
to gather qualitative feedback on aspects of the experiment.

5.4.2 Measures. Performance was measured as the time taken to perform each indi-
vidual tap action. Timing began when the participant tapped the start target for each
A and W pair, and ended with the eighth tap for that pair. Errors were measured as
tap events that occurred outside of the current target. The location of each tap was
also recorded.

5.4.3 Hypotheses. We derived our hypotheses from our reanalysis of related research.

H1. One-part formulations (i.e., Fitts and Shannon) will not accurately model
pointing performance at all gain levels.
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Table VIII.

Significant ANOVA results for movement time. An
asterisk (∗) indicates that a Greenhouse-Geisser cor-
rection was applied because the sphericity assumption
was violated.
Factor F-ratio Significance Partial η2

G F3.0,53.8 = 36.9∗ p < 0.001 0.672
A F1.1,20.4 = 778.5∗ p < 0.001 0.977
W F1.1,20.1 = 408.3∗ p < 0.001 0.958
G × A F10,180 = 4.3 p < 0.001 0.194
G × W F4.3,77.6 = 15.0∗ p < 0.001 0.455
A × W F2.5,45.8 = 18.5∗ p < 0.001 0.506

Fig. 9. Movement time results for all A and W combinations from the experimental data at G = 20. Data
points in both graphs are the same. Effective target width was used in computing ID. An independent
contribution of A and W to movement time is apparent, suggesting the need for a two-part linear model.

H2. Two-part formulations (i.e., Welford and Shannon-Welford) will accurately
model pointing performance at each individual gain level.
H3a. (weak) The exponent k will vary monotonically with gain.
H3b. (strong) The exponent k will vary linearly with gain.

5.5 Results

We were concerned with the possible impact of learning effects. Before our main anal-
ysis we performed a repeated measures ANOVA to determine if there was an effect of
block. We found no effect of block on either movement time (F2,36 = 0.943, p = 0.399)
or error rate (F1.382,24.873 = 0.117, p = 0.814, with a Greenhouse-Geisser correction for
violation of sphericity). We therefore included all blocks in our analysis.

5.5.1 Movement Time. Significant main effects of G, A, W were found. Significant
interactions of G × A, G × W, and A × W were also found. Results are summarized
in Table VIII. A visualization of movement time data for the gain G = 20 condition is
shown in Figure 9.

We performed a linear regression using data from all participants. Regression
constants calculated using the two Fitts-inspired models are shown in Table IX,
whereas results calculated using the two Shannon-inspired models are shown in
Table X. In order to adjust for accuracy we performed a second analysis of the results,
this time using effective target width (We), in the manner suggested by Soukoreff
and MacKenzie [2004], and further explored by Zhai et al. [2004]. These results
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Table IX.

Modeling of movement time using the Fitts and Welford formulations, and actual width (W). R2

values for the Fitts formulation decrease at higher gains, but the Welford formulation is consis-
tently good. F-tests indicate that the Welford model is significantly better than the Fitts model at
gain levels 16 and 20.

Fitts Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 0.070 0.233 0.991 0.269 0.236 0.229 0.97 0.992 0.18 0.684 no
5 0.089 0.204 0.989 0.336 0.200 0.209 1.05 0.989 0.29 0.608 no
8 0.076 0.209 0.982 0.389 0.198 0.221 1.12 0.985 1.21 0.314 no

12 0.032 0.242 0.980 0.402 0.232 0.263 1.13 0.983 1.16 0.219 no
16 0.022 0.256 0.972 0.517 0.239 0.296 1.24 0.982 5.13 0.049 yes
20 0.035 0.275 0.964 0.653 0.250 0.331 1.32 0.983 9.32 0.014 yes

Table X.

Modeling of movement time using the Shannon and Shannon-Welford formulations, and actual width
(W). R2 values for the Shannon formulation decrease at higher gains, but the Shannon-Welford formu-
lation is consistently good. F-tests indicate that the Shannon-Welford model is significantly better than
the Shannon model at gain levels 16 and 20.

Shannon Shannon-Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 0.084 0.286 0.998 0.046 0.291 0.283 0.97 0.998 0.69 0.436 no
5 0.100 0.252 0.998 0.144 0.247 0.255 1.04 0.998 1.62 0.250 no
8 0.087 0.258 0.994 0.195 0.245 0.267 1.09 0.996 4.26 0.085 no

12 0.082 0.282 0.990 0.228 0.271 0.304 1.12 0.994 3.77 0.041 yes
16 0.075 0.299 0.982 0.336 0.279 0.338 1.21 0.993 15.26 0.004 yes
20 0.092 0.321 0.974 0.464 0.291 0.376 1.29 0.993 25.36 0.0007 yes

Table XI.

Modeling of movement time using the Fitts and Welford formulations, and effective width (We). R2 values
for the Fitts formulation decrease at higher gains, but the Welford formulation is consistently good.
F-tests indicate that the Welford model is significantly better than the Fitts model at gain levels 16
and 20.

Fitts Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 0.133 0.223 0.989 0.214 0.240 0.210 0.875 0.993 4.19 0.087 no
5 0.041 0.228 0.982 0.274 0.228 0.229 1.00 0.982 0.002 0.966 no
8 −0.002 0.241 0.973 0.358 0.230 0.260 1.14 0.978 1.09 0.336 no

12 −0.051 0.278 0.937 0.614 0.265 0.365 1.38 0.961 3.66 0.044 yes
16 −0.028 0.292 0.910 0.985 0.273 0.457 1.67 0.970 18.23 0.002 yes
20 0.013 0.314 0.891 1.275 0.290 0.529 1.82 0.975 29.80 0.0004 yes

are presented in Table XI and Table XII. The tables also present results of F-tests
comparing corresponding two-part and one-part models at each level of gain. In
cases where a significant difference was found, the two-part model was deemed to
characterize the data significantly better than did the one-part model. A visualization
of R2 values as they vary with gain is shown in Figure 10.

To test the hypothesis that the k values varied based on gain we performed a linear
regression analysis on the k values computed using the Welford formulation for each
gain level (Figure 11). The linear function of best fit using actual width W was found
to be k = 0.946+0.018× G, with a fit of R2 = 0.970. The linear function of best fit using
effective width We was found to be k = 0.736 + 0.055 × G, with a fit of R2 = 0.992.
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Table XII.

Modeling of movement time using the Shannon and Shannon-Welford formulations, and effective width
(We). R2 values for the Shannon formulation decrease at higher gains, but the Shannon-Welford formu-
lation is consistently good. F-tests indicate that the Shannon-Welford model is significantly better than
the Shannon model at gain levels 2, 12, 16 and 20.

Shannon Shannon-Welford F-test
Gain a b R2 a b1 b2 k R2 F p sig?

2 0.132 0.280 0.994 −0.018 0.299 0.270 0.90 0.998 12.95 0.011 yes
5 0.049 0.285 0.990 0.059 0.284 0.286 1.01 0.990 0.020 0.904 no
8 0.009 0.300 0.984 0.143 0.285 0.314 1.10 0.988 2.20 0.188 no

12 0.000 0.328 0.947 0.414 0.313 0.418 1.34 0.973 5.89 0.016 yes
16 0.021 0.348 0.916 0.780 0.325 0.515 1.58 0.981 31.10 0.0003 yes
20 0.065 0.373 0.893 1.039 0.346 0.586 1.69 0.979 36.29 0.0002 yes

Fig. 10. Regression R2 values as they vary with gain for the experimental data, using We.

Fig. 11. The k values for the large display physical pointing experiment, calculated using the Welford
formulation.

5.5.2 Error Rate. Mean error rates were 7.8%. An ANOVA found significant main
effects of G, A, and W. The interaction of G × W was also significant. Results are
summarized in Table XIII.

5.5.3 Subjective Measures. A summary of results from participants’ subjective rat-
ings of the difficulty of the task is shown in Figure 12. A Friedman test comparing
ratings for low (2, 5), medium (8, 12) and high gain levels (16, 20) showed a sig-
nificant effect of gain on difficulty (χ2

(2,N=19) = 30.958, p < 0.001). Pairwise compar-
isons using a Wilcoxon Signed Ranks Test showed significant differences between
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Table XIII.

Significant ANOVA results for error rate. An asterisk
(∗) indicates a Greenhouse-Geisser correction was ap-
plied because the sphericity assumption was violated.
Factor F-ratio Significance Partial η2

G F2.9,52.8 = 28.5∗ p < 0.001 0.613
A F2,36 = 13.6 p < 0.001 0.431
W F1.4,24.3 = 96.0∗ p < 0.001 0.842
G×W F4.2,75.8 = 16.6∗ p < 0.001 0.480

Fig. 12. Mean scores of task difficulty overall, at low (2, 5), medium (8, 12) and high (16, 20) gain levels,
with standard error. Ratings on a scale of one (impossible) to five (easy). N = 19.

high and low gains (z = −3.882, p < 0.001) and between high and medium gains
(z = −3.882, p < 0.001).

5.6 Discussion

Before considering our core hypotheses, it is useful to first discuss the results of the
ANOVA for the movement time data.

The finding that there were significant effects of both A and W on movement time
is not surprising. The fact that both movement amplitude and target width impact
movement time is fundamental to any discussion of pointing performance.

The finding of a significant impact of G is also unsurprising because similar ef-
fects have been found by other researchers [Casiez et al. 2008; Koester et al. 2005;
MacKenzie and Riddersma 1994].

The interactions of G × A and G × W were unexpected, but are not surprising, as
the role of G in influencing MT, and how it may interact with other variables, is still
not entirely understood.

We summarize the results according to our hypotheses, then discuss each in more
depth.

— H1. One-part formulations (i.e., Fitts and Shannon) will not accurately model point-
ing performance at all gain levels. Somewhat supported.

— H2. Two-part formulations (i.e., Welford and Shannon-Welford) will accurately
model pointing performance at each individual gain level. Supported.

— H3a. (weak) The exponent k will vary monotonically with gain. Supported.
— H3b. (strong) The exponent k will vary linearly with gain. Supported.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 4, Article 28, Publication date: December 2012.



28:26 G. Shoemaker et al.

5.6.1 H1. One-part models of pointing performance had mixed success in char-
acterizing movement time. Using actual width W values, Fitts’s formulation gave
linear fits ranging in accuracy from a low of R2 = 0.964 to R2 = 0.991 at different
levels of gain. For the levels of gain examined these R2 values are good, surpassing
MacKenzie’s somewhat arbitrary 0.9 threshold. However, it is clear that the R2 values
are decreasing as gain increases. The Shannon formulation fares better at modeling
the data. It provides very good R2 values, but it is clear that the quality of fit is again
decreasing at higher levels of gain.

Using effective width We, Fitts’s Law is less successful. Using the Fitts formulation,
linear quality of fit in this case ranges from a low of R2 = 0.891 to a high of R2 = 0.989
at different levels of gain, failing to produce an acceptable linear fit at one level of gain.
As was the case for actual W values, the Shannon formulation fares better than the
Fitts formulation, but performance again drops off at higher gains. Effective width
results are more relevant, due to the nature of We as an accurate representation of
the task. The reason for the difference in quality of fit between actual width W and
effective width We is evident from examining the k values from the two-part models
as visualized in Figure 11. It is clear that k varies much more for We results than it
does for W results. As we have discussed, the more k deviates from 1, the less well a
one-part model will be able to describe the data.

We thus conclude that hypothesis H1 is somewhat supported. The results behaved
as expected, however, the contributions of A and W to performance did not differ
enough to result in very poor R2 values using one-part formulations, at least in the
range of gains examined. The R2 values only failed to reach the 0.9 level at the high-
est level of gain using the effective width data sets.

5.6.2 H2. Both the Welford and Shannon-Welford two-part models of pointing per-
formance produced a good fit at every level of gain for both actual widths and effective
widths data sets. The Welford formulation applied to actual width W data produced
linear regression fits ranging from a low of R2 = 0.982 to a high of R2 = 0.992. Applied
to effective width We data, linear regression fits ranged from a low of R2 = 0.961 to
a high of R2 = 0.993. The Shannon-Welford formulation applied to actual width W
data produced linear regression fits ranging from a low of 0.993 to a high of 0.998.
For effective width We, linear regression fits ranged from a low of 0.973 to a high of
0.998.

More importantly, the two-part models statistically described the data significantly
better than did the one-part models at some gain levels. The Welford model was su-
perior to the Fitts model at the gain levels of 16 and 20 for actual width results, and
gain levels 12, 16 and 20 for effective width results. The Shannon-Welford model was
superior to the Shannon model at gains 12, 16 and 20 for actual width data, and gains
2, 12, 16, and 20 for effective width data.

Thus, hypothesis H2 is supported.

5.6.3 H3. The k values were found to vary monotonically and linearly, according to
gain, supporting hypotheses H3a and H3b. For actual width data, the k values followed
a linear model quite closely (R2 = 0.970). For the effective width results, the k values
were even more accurately modeled using a linear function (R2 = 0.992). Interestingly,
the slopes for the two sets of results were noticeably different, with k varying more in
the effective width set of data. The intercept of the slope at G = 0 was also noticeably
different, although G = 0 is meaningless in an interactive setting, suggesting that the
intercept may not be of much significance.

While we have thoroughly examined how k changes with gain, it will be useful to un-
derstand how its components, b1 and b2, vary as well. In the case of our experimental
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data, it is interesting to note that b2 increases quite consistently with gain, while b1
stays relatively constant. This would suggest that at higher gains the effect of W to
decrease movement time tends to dominate over the effect of A to increase movement
times. This is an issue to investigate in depth in future work.

6. CONCLUSIONS

Fitts’s Law has been widely used as a tool for characterizing the performance of
pointing tasks on computer systems, both for forming predictive models and for
determining performance as characterized by throughput. It possesses the beneficial
attribute of being concise and simple to understand, as well as being well grounded
in information theory. However, we must remember that neither simplicity nor
adherence to a particular theory of information is in isolation enough to justify the
application of a particular model. A theoretical model is only as good as its ability to
describe empirical data. If we find shortcomings in an existing model, or discover a
new model that performs significantly better, we must resist the urge to cling to the
old model. As advised in a quote often attributed to Albert Einstein, we should “Make
things as simple as possible, but not simpler.”

Over the years Fitts’s Law has become so entrenched that researchers rarely ever
question the fundamental assumptions underlying its use in HCI. We have presented
here compelling evidence that Fitts’s Law and its one-part variants do indeed have
limitations. In some cases (Graham and Casiez) one-part models fall well short of
adequately describing the data. In other cases (Tsukitani and our experiment) they
perform significantly less well than corresponding two-part models such as Welford or
Shannon-Welford.

To help structure our work we organized pointing formulations into a 2×2 matrix.
The first axis of the matrix, degrees of freedom, categorizes formulations into one-
part and two-part models. The second axis, information-theoretic interpretation, cat-
egorizes formulations into models with Fitts-inspired roots and those with Shannon-
inspired roots. The first axis was chosen because we are primarily concerned with the
relative abilities of one-part and two-part models to describe data. The second axis was
chosen for completeness, even though the issue of information-theoretic interpretation
is beyond the scope of our current work. We explored this space of models, where we
made several contributions. First, we demonstrated the mathematical equivalence of
the Welford two-part model to a linear version of Kopper et al.’s model for ray pointing.
Second, we posited a two-part model combining elements of Welford’s two-part model
and Shannon’s one-part model. Third, we described how, in two-part models, the rel-
ative contributions of movement amplitude A and target width W to movement time
can be captured in a constant k that is the ratio of the two multiplicative coefficients
in Welford’s formulation.

Conclusions relating to the relative merits of the different models fall into two cate-
gories. First, a reanalysis of data from other researchers provided insight into the abil-
ities of one-part and two-part formulations to model pointing performance for mouse
and physical pointing on large and small displays. Second, results from a new exper-
iment provided additional insights into the application of different models to midair
physical pointing on a large wall display.

6.1 Reanalysis of Third-Party Data: Rethinking the Application of Fitts’s Law

Graham [1996] originally observed that Fitts’s Law does not accurately model physi-
cal pointing with a tracked finger at a single gain on small displays. Our subsequent
reanalysis of his data revealed that neither the Fitts nor Shannon formulations ad-
equately model performance at two of the three gain levels that Graham examined,
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whereas two-part models accurately model every level of gain. Furthermore, the two-
part models describe the data significantly better than do their corresponding one-part
models at all three levels of gain. We also demonstrated the variation of the constant
k with gain. A similar analysis of data from Casiez et al. [2008] revealed that one-part
models also fail to accurately model mouse pointing at constant gain on a large display,
with particular shortcomings at lower gain levels. In this case as well, it was found
that the two-part formulations accurately model pointing performance at all gain lev-
els. Furthermore, a linear dependence of k on gain was observed. It is important to
note that the Casiez data (unlike the other data sets we analyzed) incorporated sub-
stantial amounts of clutching in the movement times, meaning that two-part models
are also capable of capturing clutching. Our analysis of data from Tsukitani et al.
[2011] showed a pattern consistent with those found in the other analyses, although
the linear regression of k showed different slopes and intercepts for the different data
sets. Throughout our reanalysis, we found that two-part models regularly outper-
formed their one-part model counterparts in a statistically significant manner.

We investigated why the effects we observed might not have been detected by other
researchers. We concluded that careful experimental design is required to identify the
need for two-part models, and that past experiments in HCI have often lacked one or
more elements necessary to detect these effects. We arrived at a set of recommenda-
tions to be applied to the design of experiments meant to develop models of pointing
performance.

The conclusions reached in our reanalysis are as follows. One-part pointing models
cannot necessarily be relied on to accurately model pointing performance in computing
systems, especially at widely varying levels of gain. Two-part formulations of point-
ing performance can correct for the discovered shortcomings of one-part formulations.
Movement amplitude A and target width W are both of significance in modeling perfor-
mance, and should be considered as separable, independent variables when developing
models of pointing performance. The relative contributions of A and W, as captured
by k, appear to vary linearly with gain, although the intercept of the line, and possibly
the slope, vary with interaction technique.

6.2 A Model for Interaction with Very Large Wall Displays

As noted by Guiard [2009], “Currently we are witnessing a spectacular development of
drastically miniaturized as well as enlarged interfaces (e.g., handheld devices, interac-
tive wall displays), and so in HCI research we urgently need a better understanding of
what happens in pointing at nonoptimal scales.” He suggests that in this case (when
the scale of the interaction is, for example, on a very large display) it could be appro-
priate to separate the effects of A and W, a question he leaves for future research. One
of the contributions of our article is taking a first step in this direction.

Towards the goal of completing the exploration of the space of interactive techniques
analyzed, we performed an experiment to develop a performance model for midair
physical pointing on a very large wall display. Although the absolute differences in
quality of fit between the models were small, our experimental results demonstrate
that two-part models often significantly outperformed one-part models in describing
the data. Furthermore, consistent with our analyses of other data sets, we again found
k to vary linearly with gain. In isolation our experimental results might not be quite
convincing, due to the small absolute differences between model fits, but when consid-
ered in the context of our reanalysis of others’ data (especially the Casiez data), the
results are more compelling (Figure 13).

The two most valuable analyses of the article were those of the Casiez data and
of our new experimental data. These two data sets provide a good coverage of A
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Fig. 13. The k-lines for the four data sets we analyzed, as determined by linear regression. Extent of lines
indicate the range of gain values considered in each data set. The lines consistently have positive slopes, but
their intercepts are mostly very different. Note that the k-lines of the Tsukitani results and our new results
are similar, but this is expected as the interaction techniques in the two experiments were very similar. This
figure is an aggregation of Figures 3(a), 6(a), 7(a), and 11(b).

and W pairings over a wide range of gains, with a suitable number of participants.
The findings of these two experiments were consistent: two-part models consistently
out-perform one-part models, sometimes dramatically so. Furthermore, the separabil-
ity of contributions of A and W to movement time, as characterized by k, increases
linearly with gain, although the intercept and possibly the slope of the k-lines vary.
While it is true that two-part models outperformed one-part models in opposite ranges
of gains (low gains for Casiez, high gains for our data), this is possibly explained by
the fact that their k-slope intercepts were different (Figure 13). The data from both
the Graham and Tsukitani analyses lend some support, although the deficit of data
points, and possibly the small number of participants, limit their contributions.

6.3 Future Work

With the realization of the shortcomings of Fitts’s Law and other one-part models, and
the applicability of two-part models of pointing performance, it is clear that there is
much work still to be done. First, researchers may need to reevaluate conclusions that
were long thought to be sound. Existing models of pointing performance for some input
device and display combinations may be faulty, due to limitations in either experimen-
tal design or analysis.

Our understanding of the nature of k is only partially complete. We believe that k
varies linearly with gain, but the function differs by input technique. For example, at
G = 2 the Casiez et al. k was at a very low value of 0.091, whereas for our large display
midair pointing task, k was at 0.875 for the same gain level. It is important that
we examine the k dependence for different devices and display types. We should also
strive to develop a deeper understanding of the influencing factors on k. For example,
Casiez hypothesized that mouse clutching was responsible for the deviation of their
data from Fitts’s Law. We may find that clutching is a variable that influences the
k-line slope and intercept. There are also almost certainly other factors, because none
of the other pointing methods we investigated allowed clutching, yet the k formulation
was still found to be relevant.

Even more fundamental than an understanding of k is an understanding of b2 and
b1 (k = b2/b1). We have found that b2 and b1 vary with gain, but we do not know why.
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One interpretation of the Fitts formulation is that the reciprocal 1/b is the “through-
put” of the human sensorimotor system as it performs physical pointing tasks, and
the index of difficulty is the number of bits of information the system must process.
It is possible that b1 and b2 are associated with throughput values for their own re-
spective processes related to movement amplitude A and target width W. We might
imagine (and both Welford and Graham have suggested this) that there could be two
distinct processes within the sensorimotor system, one responsible for the initial ballis-
tic movement that depends on A and another for the “fine tuning” during deceleration
that depends on W. If those two processes take place at different rates, they would
have different coefficients representing their respective throughput values. Movement
time would be governed by the additive constant a plus the multiplicative constant
b1 times the number of bits required for A to be dealt with by the first process but
mediated by b2 reducing the time when the second process has determined that the
obtained precision is adequate.

To see how a two-part model might reflect the theory that there are two indepen-
dent processes in play, we can reformulate Equation (3) as Equation (12), where we
“flip” the argument for the second logarithmic term (i.e., we use the reciprocal of the
argument) and thus add rather than subtract the second logarithmic term from the
first logarithmic term. From this formulation we see that movement time increases
logarithmically as A increases and also as W decreases.

MT = a + b1 log2 A − b2 log2 W

= a + b1 log2 A + b2 log2
1
W

. (12)

There is a problem with this if W gets too large because the last term turns negative,
but if we recall from Equation (11) that the normalizing factors suggested by Welford
should be used, we actually have Equation (13). It would make sense to assume that
when W becomes larger than W0 (which is when the logarithm goes negative) we can
ignore this term because target width probably no longer has an impact on movement
time because precision is no longer an issue. This also assumes that movement is still
directed more or less to the center of the target so that A is still a valid estimate for
movement amplitude.

MT = a + b1 log2
A
A0

+ b2 log2
W0

W
. (13)

Graham’s dissertation [Graham 1996] discusses some of the evidence for there being
two separate processes, but the seeds for this can be found in Welford’s book [1971],
again on page 156, where, after describing “a faster distance-covering phase and a
slower phase of ‘homing’ on to the target,” Welford speculates that “It seems reason-
able to regard the former as similar in speed to that of a ballistic movement of a given
amplitude and the latter as implying an additional process of visual control.” Full
support for this theory will require more research, but it seems clear from our work
that there are two, not one, throughput parameters, one for A and another for W.
Welford recognized this based on his analysis of the data he collected. What is dif-
ferent today, more than four decades after Welford wrote his book, is the existence of
techniques such as functional MRI that might be used to confirm the existence of and
the throughput rates for two independent sensorimotor processes.

Related to our particular interest in large wall displays, there is again much work
to be done. We limited our examination to constant control/display gains. Variable
gains, such as the pointer acceleration investigated by Casiez et al. [2008], are impor-
tant to consider. This may allow us to expand the use of two-part models and the k
relationship to include pointer acceleration.
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